
MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

by Leon Adato

Monitoring 201:
Moving beyond simplistic monitors and alerts to #MonitoringGlory

eBOOK

page 2

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Table of Contents
1	 INTRODUCTION� 4

2	 ABOUT THIS GUIDE� 6

3	 ABOUT THE AUTHOR� 7

4	 ABOUT OUR SPONSOR� 8

The Four Phases of Development: Create, Test, Test, and Test� 9

5	 BRAINSTORMING, NOT BLAME-STORMING� 12

6	 A CHILD’S GARDEN OF MONITORS� 13

Universal Monitoring Crimes� 14

Server-based Monitoring and Alerts� 18

Network-based Monitors and Alerts� 24

7	 BONUS� 25

Bandwidth Utlization� 26

Application-based Monitors and Alerts� 27

Virtualization-based Monitors and Alerts� 31

Database-based Monitors and Alerts� 32

Top 10 Queries by CPU� 34

8	 SHOW ME THE MONEY� 35

Remember the Bad Old Days?� 35

9	 AVOID THE RETRO ENCABULATOR� 36

10	 GATHER YOUR POSSE� 37

Revenue, Cost, Risk� 38

page 3

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Table of Contents-Continued
11	 THE PLURAL OF ANECDOTE� 39

Service Monitoring Starts at Home� 39

Clearing Temp-Tation� 39

Flagging the Problem Children, then Expelling them from School� 40

Signal to Noise� 40

Repetitive Strain� 41

Nobody Wants to Hear “Oops” in the Operating Room� 41

The RX is Restarting Services� 42

The Right Information at the Right Time� 42

The Price of a Cup of Coffee� 42

The Little Things Add Up� 43

12	 THE COMPLETELY UNECESSARY SUMMARY� 45

13	 APPENDIX A: WHAT CAN GO WRONG WITH IIS?� 45

Crash vs Hang� 46

14	 DEDICATIONS� 47

page 4

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

A few years ago, I realized I was repeatedly encountering the same problem: a
lack of basic knowledge about what monitoring is and how it works. Managers
would buy one solution expecting it to perform multiple operations, only to become
frustrated when it didn’t. There was very little understanding of the alternatives to
the specific solution that had been purchased, which created frustration among
teams who had conflicting views about that solution.

So, I wrote “Monitoring 101,” a comprehensive guide to the fundamentals of monitoring. This
vendor-agnostic e-book described in simple terms how each of the handful (okay, more like
two handfuls) of techniques - the ones that form the basis for 90% of all monitoring solutions -
worked, along with why and when they should be used.

The guide has become a valuable resource for monitoring specialists to share with new
monitoring specialists, managers, and colleagues in other teams who consume the results
of monitoring data. It helps everyone understand what is happening under the hood, what the
limitations are, and what other options are available.

That was a good start, but it’s time to put class back in session.

In this installment, I want to tackle the next major issue that I‘ve found in most organizations with
regard to their monitoring: simplistic monitoring that doesn’t really lead to meaningful action.

What I mean is that once people understand the basics of monitoring and have a reasonably
sufficient software solution in place, they load up their devices and start collecting whatever data
comes out of the box, even when that data doesn’t tell a truly meaningful story. This illustrates
that people maintain a high level of trust in the metrics their vendors collect.

Introduction

page 5

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

(It should be noted that, in most cases, this trust is well placed. I know very few monitoring
products that PURPOSELY collect incorrect or meaningless data. But I’ve met many monitoring
engineers who cannot describe why a particular metric is useful or necessary.)

You don’t want to collect the wrong metrics, but doing so is fairly innocuous. As long as the
database or storage team isn’t complaining about the amount of space being “wasted” by
“useless data,” which nobody ever does because nobody looks all that closely, your software
will collect and process stuff that will never be used.

But then the alerts get turned on, and that’s when people’s time really gets wasted.

Do you know what is wrong with an alert that triggers when CPU utilization is over 90%?
Everything. It says nothing about what is going wrong, or even if anything is going wrong. As a
SysAdmin, if I see a server that is consistently running at 90% and keeping up with its workload,
I call that “correctly sized.” It is likely that you do, too.

But what you’d really like to know is when the number of jobs waiting for CPU is greater than
the number of CPUs in the system while there is high CPU utilization that has persisted for a
significant length of time. Better still, the alert should tell me what the top running processes
are at the time of the trigger.

That tells a clear story about what is wrong and how to go fix it.

These are the issues this guide is designed to address.

page 6

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

This guide was written to provide an overview of monitoring techniques and
concepts that help the reader get beyond the out-of-the-box options that are often
generic, simplistic, and less useful than they want, need, or appear to be.

Despite how that sounds, that’s not an indictment of monitoring software vendors. Shipping
a product with complex, labyrinthine, or highly specified alerts and monitors isn’t helpful
for beginners. In fact, it creates the impression that the software is useless, or worse, that
monitoring is useless.

So, it’s understandable that your shiny new monitoring software sets you up with the basics.
It’s easier to comprehend what the alert logic is doing, especially if you are also shiny and new
(either to IT in general or to monitoring specifically). The mistake is thinking that what you find
after installation is the be-all and end-all of all monitoring. Trust me, it gets much much better,
especially if you are willing to put in a little work and think carefully about the environment you
are monitoring. Ideally, you narrow the scope of events and data that should be monitored so
you get the best information that leads you to the most efficient fix.

If you find yourself a bit behind on monitoring concepts, we can recommend the comprehensive
(and free) “Monitoring 101” guide. There’s also a great guide that focuses specifically on
monitoring automation, called “It’s Automation, Not Art” that you may want to check out as a
companion to this book.

This guide is completely tool- and vendor-agnostic. It won’t describe how to collect metrics or
set up alerts, for example. Instead the focus is on discerning what the correct input metrics are,
and why they are effective.

While the author has decades of experience with a wide variety of monitoring solutions, those
experiences were used only in the sense that they provided insight into general trends and
techniques. Nothing in this document will require that you use software package XYZ to actually
dive into advanced monitoring and alerting with the ideas and techniques presented.

But it is the author’s hope that after reading this, and after you’ve dispensed with the basics,
you’ll look at the alerts and monitors in software package XYZ and say, “Okay! Let’s put this
thing to work!”

About This Guide

page 7

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Over the course of a career that has spanned over three decades and four countries,
Leon Adato has, at various times, been an actor, electrician, carpenter, stage combat
instructor, pest control technician, Sunday school teacher, and ASL interpreter. He
also worked on computers from time to time.

Leon got his start providing computer classes at a time when the two requirements to teach
computers were to – and this is right out of the help wanted ad – “have a pulse and own a suit.”
From there, he worked his way up the IT food chain from desktop support, server support,
desktop environment standardization engineer, and from there into the wild and oddly satisfying
world of systems monitoring, management, and automation. Along the way he also discovered a
weird love for taking tests, and picked up an alphabet’s worth of certifications including WPCR,
CNE, MCP, MCSE, MCSE+I, CCNA, and SCP.

Leon spent almost 20 years honing his monitoring skills at companies that ranged from big
(National City Bank) to bigger (Cardinal Health®) to ludicrous (Nestle®), becoming proficient with
a variety of tools and solutions along the way.

A user of SolarWinds® software since 2003, Leon attracted the attention of SolarWinds staff
due to his participation on the SolarWinds THWACK® forums, along with an impressive point
total that was achieved via a mixture of helpful posts, UX sessions, participation in beta and RC
testing, and abject whining.

It was about that time that Head GeekTM Patrick Hubbard noticed that Leon was long-winded to
a fault, and that he lacked the good sense to be nervous in front of large audiences.

And so, in 2014, Leon was offered a position as Head Geek. Hooked by the job title alone, Leon
made the leap from in-house monitoring wizard to spastic fast-talking technical evangelist,
and he hasn’t looked back since (mostly because he’s also incredibly uncoordinated and would
probably run into something.)

About The Author

Leon Adato
SolarWinds Head Geek

page 8

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

The author has used SolarWinds tools since 2003, and here’s what he’s learned in
that time:

First, SolarWinds is “Geek BuiltTM.” That means that geeks, including SysAdmins, engineers, and
other IT professionals, produce solutions for other geeks. SolarWinds addresses real problems
that geeks face every day at work. We’re not designing solutions based on which buzzwords are
getting the most play on social media. Instead, we spend a lot of time talking to people in the
trenches to find out not only what they are thinking about in terms of problems, but also how
they would like to see those problems addressed. That feedback becomes the list of features
we build into the next version.

Second, it’s modular. You don’t need to get the whole suite in one monolithic installation. You can
determine which functionality you need, and then get the modules that meet those needs. The
modules will snap together under a common framework, and also integrate well with solutions
from other vendors. Because real geeks know that you don’t get to pick every single piece of
software the company uses, and that, like a good mutt, heterogenous solutions are often the
most robust and faithful allies you can have in the data center. The flipside of this is that each
module is flexible. Each tool has a variety of “outside-the-box” actions you can take to get almost
any job done.

Finally, and there’s no way to dress this up, SolarWinds solutions are affordably priced. Especially
when you consider the features in each module, and function profile. Is it free? Of course not.
My kids’ orthodontist likes getting paid regularly, too. But you are definitely getting enterprise-
class solutions at SMB prices.

Head over to http://www.solarwinds.com for more detailed information on products and pricing.
You can also download a free, unlimited (meaning you can load up as many devices as you want),
30-day demo of any (or all) of the SolarWinds’ modules.

Pro Tip: There are also about two dozen free tools you can download over at http://www.
solarwinds.com/free-tools/

About Our Sponsor

page 9

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

THE FOUR PHASES OF DEVELOPMENT: CREATE, TEST, TEST, AND TEST
Hopefully there are a few examples in this guide that will get you excited, spark your creativity,
or maybe just make you say, “I need to see that for myself.” Whatever your reason, diving right
in and putting one of them into action in your production environment is never a good idea.

Not ever.

I’m serious.

Before we can begin any discussion that suggests creating new monitors and/or alerts, we need
to take a moment and discuss proper testing.

I mentioned this in the “Automation, Not Art” e-book, but it’s worth repeating and even elaborating
on here:

»» Understand the difference between the scope of an alert and the trigger conditions. Even if
your monitoring solution doesn’t divide these out, “Operating System = Windows” is not an
alert trigger, it’s a scoping statement. When testing, ratchet the scope as small as you can
and expand it slowly. What you want to test is the trigger condition first.

»» To that end, identify your test machines first: Whether that is lab gear set aside for the purpose,
or a few less-critical volunteers, set up your alert so that it only triggers for those machines.

»» Learn to use reverse thresholds: While your ultimate alert will check for CPU>90%, you probably
want to avoid spiking the test machines repeatedly. Just turn that bracket around. CPU<90%
is going to trigger a whole lot more reliably, at least we hope so.

page 10

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

»» Find the reset option: Closely related to the previous point, know how your monitoring tool
resets an alert so it triggers again. You will likely be using that function a lot.

»» Verbose is your friend: Not at cocktail parties or a movie theater, but in this case, you want to
have every possible means of understanding what is happening and when. If your tool supports
its own logging, turn it on. Insert, “I’m starting the XYZ step now,” and “I just completed the
XYZ step” messages generously in your alert actions. It’s tedious, but you’ll be glad you did.

»» Eat your own dog food: If you were thinking you’d test by sending those alerts to the production
team, think again. In fact, you aren’t going to send it to any team. You’re going to be getting
those alerts yourself.

»» Serve the dog food in a very simple bowl: You really don’t need to fire those alerts through
email. All that does is create additional delays and pressure on your infrastructure, as well as
run the risk of creating other problems if your alert kicks off 732 messages at the same time.
Send the messages to a local log file, to the display, etc.

»» Share the dog food: Now you can share them with the team as part of a conversation. Yes,
a conversation.

»» Embrace the conversation: This process is going to involve talking to other people. Setting up
a new (and likely more sophisticated) monitor or alert is collaborative, because you and the
folks who will live with the results day in and day out should agree on everything from base
functionality to message formatting.

»» Set PHASE-ers to full: Once the monitor or alert is working on your test systems, plan on a
phased approach. Using the same mechanism you did to limit the alert to just a couple of
machines, you are going to widen the net a bit, maybe 10-20 systems. And you test again
to observe the results in the wild. Then you expand out to 50 or so. Make sure both you and
the recipients are comfortable with what they’re seeing. Remember, by this point the team is
receiving the regular alerts, but you should still be seeing the verbose messages I mentioned
earlier. You should be reviewing with the team to make sure what you think is happening is
what is really happening.

Following those guidelines, any automated response should have a high degree of success, or
at least you’ll catch bad monitoring and alerting before it does too much damage.

So, which example should you start with? Find the things that have the biggest bang for the
least effort.

A great place to start is to look at your current help desk tickets. Look for monitoring-based
alerts that have a high incidence of “mass close” operations (if your ticket system supports that
feature) or where large numbers of the same type of ticket are closed at about the same time
(within three minutes of each other).

These are likely the monitors and alerts that happen too often with no actionable result.

page 11

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Another good place to find ideas for automation is the lunch room (whether physical or virtual
– don’t ignore your remote folks, they often know more about things that go bump in the
night because their hours are more flexible). Listen to teams complain and see if any of those
complaints are driven by system failures. If so, it may be an opportunity for a sophisticated
alert to save the day.

Finally, don’t plan too far ahead. As apprehensive as you may feel right now, after one or two
solid, if small, successes, you will find that teams are seeking you out with suggestions about
ways you can help.

page 12

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

As we move into the core of this e-book, I wanted to give a quick overview. Each
entry will break down into the following sections:

»» THE CULPRIT: Where I describe a typical/default monitor or alert that either comes pre-set
in your monitoring solution, or is typically set up by novice monitoring engineers. But the key
is that it is utterly ineffective.

»» THE CRIME: An explanation of why it is ineffective.

»» THE CORRECTION: Detailed information on how to make this type of alert meaningful to most
IT professionals.

That said, I don’t want to give the impression that anyone is at fault. People who are new to
monitoring tools don’t always know the sophistication that is available to them, and so they go
for the lowest (or easiest) common denominator.

Meanwhile, monitoring vendors build simple and non-specific alerts on purpose, as a way to
introduce users to the way alerts could work. They aren’t meant to be used out of the box as
much as they should be models upon which customers base their actual alerts.

If you find these types of alerts in your environment it means you are normal, your monitoring
solution is normal, and everything is not going to hell in a handbasket. It just means you are
about to read some pure monitoring awesomeness that you can use to make your environment
(more) awesome too.

Brainstorming, Not Blame-Storming

page 13

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

So here we are, at the heart of the matter. Below you will find examples of
sophisticated monitors and alerts in several different categories.

Even with what you find below, you will most likely need to make slight alterations – salt to taste
as the foodies say – because everyone’s environment is just a little bit different.

However, I think that the information you’ll find, which includes the reasoning behind why the
original monitor was sub-optimal, and how the new design improves and makes things more
usable – is worth it all by itself. It shows the thought process that should become second nature
if you want to set up robust, effective, disciplined monitoring.

I want to start with the monitor that got this whole ball of wax started: The Ultimate CPU Alert.

Monitoring CPU is simple, and alerting on high CPU is one of those things everyone sets up
when they first tear the shrink wrap off their shiny new monitoring solution. But simply alerting
on high CPU is, as I mentioned at the start of this e-book, wrong on so many levels.

A Child’s Garden Of Monitors

page 14

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

But I’m getting ahead of myself. Let’s break this down with a sample:

With that seminal example out of the way, I have grouped the rest of my 201-level monitors by
their general area of interest (server, application, network, etc).

UNIVERSAL MONITORING CRIMES

Fixed Thresholds

THE CULPRIT
Triggering any type of alert at a fixed value for a group of devices.

THE CRIME(S)
There are several crimes at play here:

»» While general thresholds can be established, it is unlikely that every single device is going to
adhere to the same one. Thus you end up with multiple versions of the same alert:

•	 CPU Alert for Windows® IISTM, DMZ

•	 CPU Alert for Windows IIS, core

•	 CPU Alert for Windows ExchangeTM CAS

•	 CPU Alert for Windows Exchange MTA

•	 CPU Alert for those other Windows IIS, Special

•	 CPU Alert for those other Windows IIS, Special 2

CPU ALERTS

The Culprit

Alerting when CPU Utilization is > xx%

The Crime

High CPU alone is rarely an indicator of any actual problem. In many cases, high CPU is
proof that the system was sized correctly for the work that’s being done…

(You’ll find a full explanation in the Server-based Monitors and Alerts section.)

The Correction

The key is to collect three separate pieces of information:

1. The CPU utilization – CPU_UTIL

2. The number of CPUs (or cores) on the system – CPU_COUNT

3. The number of jobs waiting to be processed – CPU_QUEUE

(Again, you’ll find a full explanation in the Server-based Monitors and Alerts section.)

page 15

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

»» Even for a single server, utilization varies from day to day, which is normal. So, you may have
a server that usually runs at 50% CPU, but spikes to 95% at the end of the month. This is
perfectly acceptable.

THE CORRECTION
There are two general solutions for this issue, depending on the sophistication of your monitoring
solution:

»» Enable per-device thresholds. This may be done within the tool, or by using customizations.
The point is that you should be able to have a specific threshold for each device. Then, your
alert logic looks something like this (using CPU as the example metric):

	 IF

	 (CPU _ THRESHOLD is not blank

	 AND % _ CPU _ Utilization > CPU _ THRESHOLD)

	 OR

	 (CPU _ THRESHOLD is blank

	 AND % _ CPU _ Utilization > default%)

In this way, machines that have a specific threshold trigger at the correct time, and those that
do not get the default.

»» Baselines. These have the benefit of handling per-device alerts and also leverage the
monitoring data you are already collecting. When using baseline data, your threshold is set
to a % or value different than normal – with normal being determined by the baseline data
for that time period.

»» If you use baselines (which I highly recommend you do, if your software supports them), you’ll
want to think through some of the edge cases. For example, if the condition you are trying to
alert on is a constrained CPU and 2σ is still only 23%. That’s not particularly helpful. So you
may want to add a second condition (as we did above), such as:

	 WHERE(% CPU utilization > 2σ AND % CPU utilization > X%)

Lab, Test, and QA for your Monitoring

THE CULPRIT
No test or QA environment for monitoring.

THE CRIME
Many organizations set up a proof-of-concept environment for their monitoring solution, but
once the production system is rolled out, they fail to have any type of lab, test, or QA system
that is maintained on an ongoing basis.

page 16

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

THE CORRECTION
The hard truth that many organizations fail to recognize is that if your monitoring system is
watching and alerting on mission critical systems within the enterprise, then it is mission critical
itself. And if that is the case, then it needs to have the same level of rigor that would be given to
other key systems, meaning one or more separate installations that serve roles such as:

»» TEST: an environment where patches and upgrades can be tested before attempting them
in production

»» DEV: an environment that mirrors production in terms of software, but where monitors for
new equipment, applications, reports, or alerts can be set up and tested before rolling those
solutions to production

»» QA: an environment that mirrors the previous version of production, so that if issues are found
in production, they can be double-checked to see whether the problem was introduced in the
latest revision

I’m not saying that all of these environments are needed, but at least one is going to be highly
beneficial to helping ensure that your monitoring is reliable.

Watching the Watcher

THE CULPRIT
What monitors the monitoring system?

THE CRIME
Having a tool or set of tools that monitor and alert on mission-critical systems, but having
nothing in place to identify problems within the monitoring solution itself.

THE CORRECTION
The answer is pretty straightforward: Set up a separate instance of a monitoring solution that
keeps track of the primary, or production, monitoring system. It can be another copy of the
same tool or tools you are using in production, or a separate solution, such as open source,
vendor-provided, etc.

Another option is to use the QA/lab/dev instance described earlier to also monitor the production
toolset.

One more thing to consider for this subject is that monitoring services, availability, etc., for your
production monitoring solution is good, but having a test that verifies end-to-end capability is
better. The best way to make sure that everything is working optimally is to create a synthetic
transaction that injects an event, helps ensure that an alert is generated all the way to the
ticketing system – if your monitoring system goes that far – and then notifies you when that
set of actions fails.

page 17

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Instant Alerts

THE CULPRIT
Triggering alerts as soon as a condition is detected.

THE CRIME
In the vast majority of cases, the time for automated investigation and validation occurs the
instant a problem is detected by the monitoring system.

The reasons why this is bad are legion. Monitoring systems are not perfect. Sometimes they pick
up false positives. Sometimes problems appear for a moment and then just disappear. Some
issues aren’t really actionable unless they’ve persisted for a period of time. The list goes on.

THE CORRECTION
Except for a narrow category of alerts, a delay should be included in the trigger logic. So, the
CPU alert mentioned earlier would need to have all of the specified conditions persist for, say,
10 minutes, before any action would be needed. Anything less represents a momentary spike in
activity, from which the server could easily recover. Spikes lasting more than 10 minutes indicate
a need for more direct intervention.

To set these trigger delays correctly, it is important to understand the interaction of your
monitoring system’s polling cycle, trigger alert check cycle, and the delay you put in place. This
is described in greater detail in this video.

One such exception to this rule are message-based alerts. These include input from traps,
syslog, log files, and the like. Unless your threshold is the quantity of the same message over a
period of time, the instant you receive the message is the instant you should act.

Example: When you receive a configuration change trap from a network device, you should
immediately respond by pulling the new configuration, comparing to the previous iteration, and
then acting appropriately if they are meaningfully different.

Flapping/Sawtoothing Alerts

THE CULPRIT
Alert definitions that create multiple notifications for repeated events.

THE CRIME
As described in “Monitoring 101”, when an alert repeatedly triggers (a device that keeps rebooting
itself, a disk drive that hovers on the edge of full, and processes keep deleting/creating temporary
files so that one moment it’s over threshold, the next it’s below), that condition is known as
flapping or sawtoothing.

page 18

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

The crime should be obvious. Even if the threshold is momentarily resolving and then re-
triggering, the problem never really reversed.

THE CORRECTION
Again, as mentioned in “Monitoring 101,” there are a few possible corrections, depending on what
is supported by your monitoring solution and which suits the specific situation:

»» Suppress events within a window. Some software can ignore duplicate events during a period
of time.

»» As mentioned in the previous scenario, you can add a delay before triggering.

»» Do not cut a new alert until the original has reset. Sophisticated monitoring tools will wait for
a reset event before triggering a new alert of the same kind. This reset typically looks like the
alert trigger, but in reverse (if the alert is > 90%, the reset might be < 90%). Better tools will let
you code the reset rules separately so that you might trigger when disk > 90%, but it won’t
reset until it’s < 80%. Even better, if you can add delays to both the alert trigger and the alert
reset, you can trigger when the device is down for two minutes, but only reset after it has
been up for 10 minutes.

»» Two-way communication with a ticket or alert management system. Best case would be for
the monitoring system to communicate with the ticket and/or alert tracking system so you
can never cut the same alert for the same device until a human has actively corrected the
original problem and closed the ticket.

SERVER-BASED MONITORS AND ALERTS

CPU Alerts

THE CULPRIT
Alerting when CPU Utilization is > xx%.

THE CRIME
High CPU is, by itself, rarely an indicator of any actual problem. In many cases, high CPU alone
is proof that the system was sized correctly for the work being done. The idea is that if the CPU
is consistently high (but not pegged at 100%), and the system is keeping up with demand, then
you are utilizing all of the hardware resources effectively.

page 19

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

THE CORRECTION
The key is to collect three separate pieces of information:

»» The CPU utilization (yes, you still need that) - CPU_UTIL

»» The number of CPUs (or cores) on the system - CPU_COUNT

»» The number of jobs waiting to be processed - CPU_QUEUE

	 Then the alert trigger should be set when:

	 (CPU _ QUEUE > CPU _ COUNT) AND (CPU _ UTIL > xx%)

	 … for more than yy minutes.

In this situation, you know that the CPU is spiking AND the machine is not keeping up with
demand. This is a clear sign that either a process has run wild, or it’s time to upgrade your
hardware.

In Windows machines, the CPU_QUEUE is going to be a performance monitor counter (Perfmon
Counter). Look for it under the System category, listed as Processor Queue Length.

Meanwhile, on Linux® systems, CPU_QUEUE is called loadAverage15MinInt, and you can get to it
with the following SNMP OID: 1.3.6.1.4.1.2021.10.1.5.3. Note that this is an integer, so you’ll have
to take this number and divide by 100 to get it to match up to the CPU_COUNT. If you want more
granular monitoring, there’s a five-minute value (1.3.6.1.4.1.2021.10.1.5.2), and even a one-minute
value (1.3.6.1.4.1.2021.10.1.5.1).

Memory Alerts

THE CULPRIT
Alerting when memory utilization is > xx%.

THE CRIME
Memory alerts, like CPU, are one of the first things new monitoring engineers slam into place.
This ends up causing recipients of those well-meaning alerts to consider monitoring to be little
more than noise because saying that memory utilization is high, by itself, indicates very little.

THE CORRECTION
The key here is to see when memory utilization and paging (swapping memory to disk) are high
at the same time. To do that, there are two additional elements on a Windows system that you
need to consider: Page File Utilization(%) and Memory Pages Per Second.

So, the appropriate trigger formula would look something like this:

page 20

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

RAM Util% > 90% AND Page File Util% > 90% AND Memory Pages per Second > 25

On Linux systems, the formula is slightly more complex. You need

Real Memory % Used > 98% and SWAP Memory % used > 98%

But discerning a straightforward Real Memory and Swap Memory value is a little tricky. As
outlined in Bob Ross’ in-depth post here: https://thwack.solarwinds.com/message/163840,
Linux RAM is calculated and displayed a few different ways. Without going too far into it, you
can either calculate the real % memory used as:

1 - ((memAvailReal + memBuffer + memCache) / memTotalReal)

OR (if you prefer, as described in the article linked above) as:

1 – (memAvailReal / memTotalReal)

To save you the legwork, the SNMP OIDs for those values are:

1.3.6.1.4.1.2021.4.5.0 => memTotalReal

1.3.6.1.4.1.2021.4.6.0 => memAvailReal

1.3.6.1.4.1.2021.4.14.0 => memBuffer

1.3.6.1.4.1.2021.4.15.0 => memCache

Meanwhile, the other side of the equation is swap. For this, you need the OIDs:

.1.3.6.1.4.1.2021.4.3.0 => memTotalSwap

.1.3.6.1.4.1.2021.4.4.0 => memAvailSwap

That makes the formula for SwapMemory % Used pretty simple:

1 – (memAvailSwap / memTotalSwap)

page 21

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Disk Alert (with Clearing)

THE CULPRIT
Alerting when a disk is xx% full.

THE CRIME
As fellow Head Geek Thomas LaRock and I discuss in this episode of SolarWinds Lab™, simplistic
disk alerts don’t help anyone. If you have a two TB disk, alerting when it is 90% used translates
to having 204.8 Gb of disk spaces remaining.

That’s quite a lot of space, and definitely not a reason to be concerned. To discern whether
there’s really a problem, you need more information.

THE CORRECTION
There are two main ways to look at disk space usage and alert effectively:

»» Current % usage and space remaining.

»» Disk usage as a delta over time.

CURRENT % USAGE AND SPACE REMAINING
As Tom and I discuss in the video above, a more accurate way of alerting on disk usage would
be to look at both the % utilization in combination with the amount of space remaining. For
example: %util > 90% AND Space_Remaining < 50 Gb, so you don’t wake someone up in the
middle of the night for something that could have waited until morning.

Another important thought is to test for the TOTAL disk space to further enhance the logic.
As a simple example of this, if a disk is > 1Tb, then the logic I give above (%util > 90% AND
Space_Remaining < 50 Gb) would be applicable. But if the disk was smaller (say 250Gb), then
a different Space_Remaining threshold would be used.

The best part about this is that it can be set up within a single, albeit complex alert. This means
you can reduce the overall management and maintenance of alert rules in the environment.

There is also the understanding that, especially with disk alerts, you often have time to turn
the ship. Setting up a warning, rather than a critical, alert when, for example, %util > 80 AND
Space_Remaining < 100Gb would allow you to use automation* to clear the temp directory,
truncate log files, and possibly deal with the issue completely without human intervention. A
second, more critical level could then be used when the situation was especially dire.

DISK USAGE AS A DELTA
Another way to look at disk alerts is to understand that it’s not the disk usage at any given point
in time which is a cause for concern, but the rate of consumption (or the delta over time). If the
% of disk utilization is holding steady at 89% for a week, and then blips up to 91% that’s probably

page 22

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

just a sign of normal usage. But if the usage spikes by 10% within a short period of time, that’s
a cause for concern even if the actual utilization is a jump from 55% to 65%.

Presuming your monitoring solution is able to track and trigger on such a condition, monitoring
on a delta should, as with the previous scenario, be used in combination with other data points
to determine the severity of the concern. Using the previous example, a 10% jump in 15 minutes
might be a cause for concern but if that jump is going from 55% to 65% it certainly shouldn’t
be a reason to pull someone out of a meeting (ie: it’s a warning, not a critical threshold). But a
10% jump from 89% to 99% definitely is.

* For more about automated responses to disk alerts (as well as many, many other conditions)
please check out our “Automation, Not Art” e-book.

Monitoring for a Locked-out Monitoring Domain Account

THE CULPRIT
Monitoring solutions, especially those that use agentless collection techniques, often use
domain accounts to connect to systems and pull statistics.

THE CRIME
If that account becomes locked, life for you as a monitoring engineer tends to get very ugly, very
fast. While this isn’t a crime per se, because monitoring solutions need to get their statistics
somehow, agentless techniques are especially vulnerable. That’s why this situation should be
monitored and alerted on.

THE CORRECTION
There are two hurdles to overcome to mitigate this situation:

»» You can’t monitor the account using the same system that will be impacted if the domain
account gets locked.

»» You need a second domain account to check whether the main account used by monitoring
has been locked.

That said, there is a very simple, script-based solution that uses Windows PowerShellTM, which
can run on the monitoring solution you use for testing, proof of concept, etc. You could run
this script via a Windows task or other job scheduler, and set up your own notification method.

Returns either ‘True’ or ‘False’ from the LockedOut property given the name of the
User Logon Name

$is _ locked = get-aduser <MyAccountName> -Properties * | Select-Object -exp LockedOut

if ($is _ locked -eq ‘True’)

 {

Write-Host ‘Statistic: 1’

Write-Host ‘message: Account Locked Out’

page 23

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

 }else{

Write-Host ‘Statistic: 0’

Write-Host ‘message: Account Not Locked’

}

Monitor Windows Task Manager with SNMP

THE CULPRIT
Not being able to get current processes off a Windows-based system.

THE CRIME
Simple Network Management Protocol (SNMP) is an amazing thing. It is tight and efficient and,
as the name implies, simple. It is ubiquitous across network devices, Windows, Linux, and even
IoT devices, such as your internet-connected coffee pot.

It is also old and somewhat archaic, especially in the face of newer, albeit less efficient or elegant
monitoring options such as WMI, IPSLA, or API-based techniques.

Some monitoring tools are limited to SNMP, though. If that’s the case, you may believe you
cannot get a list of the top running processes on a Windows system, whether for display
purposes or to inject insight into an alert.

This is not the case.

THE CORRECTION
First, here are the SNMP Object IDs (OIDs) you’ll need:

»» hrSWRunName 1.3.6.1.2.1.25.4.2.1.2

»» hrSWRunPerfCPU 1.3.6.1.2.1.25.5.1.1.1

»» hrSWRunPerfMem 1.3.6.1.2.1.25.5.1.1.2

To make this work, you will need to:

»» Set up each of those OIDs using a Get Table operation

»» Pull your label names from the hrSWRunName data set

»» Join all of the data sets using the IndexID found in each of the table sets

»» Convert the CPU value into a percent by using the following formula:

	 truncate(({hrSWRunPerfCPU}/columnsum({hrSWRunPerfCPU}))*100,0)

page 24

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

You’ll have a display that looks like this:

NETWORK-BASED MONITORS AND ALERTS

Errors and Discards

THE CULPRIT
Packet error and/or discarded packets alerts.

THE CRIME
Both of these are simple counts, which could rise dramatically, or slowly, but could end up being
a large number that signifies nothing important.

THE CORRECTION
Errors (and discards) are a report of how many packets had issues. The number of errors is
relative to the total number of packets sent and/or received. If 100 of 10,000 packets result in
errors (1%) that is something you want to take a look at, whereas if 10,000 packets of 10,000,000
error (0.1%) then you’ve got little to worry about, even though the total number of packets is
higher.

Is 1% the right threshold? Maybe or maybe not. The point is to have the ability to measure against
the overall packet count.

page 25

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Josh Biggley - SolarWinds expert, THWACK MVP, and all around great guy –
originally contributed this crime. Never one to leave people wondering how
to actually implement a solution, he’s provided a SQL query to get the exact
measurements described above. Some aspects of this example are specific to the
Solarwinds database (especially field names), but even so, this should give you
a general idea of how such an alert trigger would be configured, which you can
modify to fit your monitoring solution:

SELECT Interfaces.FullName, Interfaces.InterfaceID FROM Interfaces

WITH (NOLOCK)

JOIN

(

SELECT

	 ie.[InterfaceID]

	 ,CASE WHEN

		 ie.[In _ Errors]+ISNULL(it.[In _ TotalPkts],0)=0

		 THEN 0

		 ELSE (([In _ Errors])/(ie.[In _ Errors]+ISNULL(it.[In _ TotalPkts],0))) * 100

		 END ReceivePercentErrors

	 ,CASE WHEN

		 ie.[Out _ Errors]+ISNULL(it.[Out _ TotalPkts],0)=0

		 THEN 0

		 ELSE (([Out _ Errors])/(ie.[Out _ Errors]+ISNULL(it.[Out _ TotalPkts],0))) * 100

	 END TransmitPercentErrors

	 FROM [dbo].[InterfaceErrors _ Detail] ie WITH (NOLOCK)

	 LEFT JOIN [dbo].[InterfaceTraffic _ Detail] it WITH (NOLOCK) ON ie.InterfaceID=it.InterfaceID

		 AND ie.[DateTime]=it.[DateTime]

	 WHERE

	 (

		 In _ Errors > 0

		 OR Out _ Errors > 0

)

	 -- Events from the Last 7 Minutes to match interface polling interval

	 AND ie.DateTime >= DATEADD(SS, -420, GETDATE())

) AS T1 ON T1.InterfaceID = interfaces.InterfaceID

--Not required unless filtering on a node custom property

JOIN NodesData nd WITH (NOLOCK) ON interfaces.NodeID = nd.NodeID

JOIN NodesCustomProperties ncp WITH (NOLOCK) ON nd.nodeid = ncp.nodeid

WHERE

([T1].[TransmitPercentErrors] >= 1

OR [T1].[ReceivePercentErrors] >= 1)

Bonus!

page 26

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

BANDWIDTH UTILIZATION

THE CULPRIT
Alerting when bandwidth is over a particular threshold that is not 100%.

THE CRIME
Like CPU, monitoring raw bandwidth tells you nothing about what is actually going wrong, or if
anything is actually going wrong, and often causes non-network people to panic unnecessarily.

Running consistently at 97% bandwidth is, by itself, a sign that you purchased EXACTLY the
right amount of bandwidth for your needs.

THE CORRECTION
Correcting this is actually very simple. All you need to do is add in response time. Because when
bandwidth is over a certain level and your response time through that same interface is high,
that indicates a bottleneck that needs to be addressed.

Once again, Josh Biggley has jumped in with some specifics. The overall trigger would look
something like this:

WHERE

Bandwidth > (Bandwidth _ Crit OR 92%) AND

Response Time > the value for 2σ

MUST EXIST for 21 minutes or more

And the SQL for such a beast might look like this (again, this is specific to SolarWinds but you
can get the gist regardless)

SELECT Interfaces.FullName, Interfaces.InterfaceID FROM Interfaces

INNER JOIN Nodes ON (Nodes.NodeID = Interfaces.NodeID)

INNER JOIN NodesThresholds NodesThresholdsResponseTime _ NodesThresholds ON

	 Nodes.NodeID = NodesThresholdsResponseTime _ NodesThresholds.InstanceId

	 AND NodesThresholdsResponseTime _ NodesThresholds.Name = ‘Nodes.Stats.ResponseTime’)

WHERE

(

 (Nodes.OwnerGroup = ‘NETWORK’) AND

 (Nodes.Prod _ State = ‘PROD’) AND

 (Nodes.n _ mute <> 1) AND

 (Interfaces.i _ mute <> 1) AND

 (Interfaces.InterfaceCategory = ‘WAN’)

	 AND

 	 (

 	 (

	 (Interfaces.Bandwidth _ Crit IS NOT NULL)

		 AND (Nodes.ResponseTime >= NodesThresholdsResponseTime _ NodesThresholds.
Level1Value)

		 AND (Interfaces.InPercentUtil >= Interfaces.Bandwidth _ Crit))

	 OR

	 (

		 (Interfaces.Bandwidth _ Crit IS NULL)

		 AND (Nodes.ResponseTime >= NodesThresholdsResponseTime _ NodesThresholds.

page 27

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Level1Value)

		 AND(Interfaces.InPercentUtil >= 92)

)

)

)

Another way to consider the question (not the problem, but the question that leads to identifying
a situation as a problem in the first place), is to use NetFlow to show how that bandwidth is
being utilized.

Consider the following two scenarios:

»» Bandwidth on the interface that feeds the main application database is running at 97%
consistently. Response time through that interface is within normal levels. NetFlow shows
the majority of the traffic is on port 1433 (the default MS-SQL port).

»» Bandwidth on the office router runs at about 60%. Response time through that interface
is higher than you’d expect. NetFlow shows the traffic is a mix of NetFlix® (50% of usage),
MSNBC® (20%), social media (20%), and traffic to the main office (10%).

•	 Using just bandwidth, you’d create an alert for the first scenario but not the
second

•	 Using the two metrics I mentioned earlier (bandwidth and response time), you
still wouldn’t flag the second scenario, but you also wouldn’t have marked the
first one

NetFlow would allow you to identify that even though bandwidth utilization is perfectly fine,
the combination of slow response time and the specific uses of that bandwidth are cause for
concern.

APPLICATION-BASED MONITORS AND ALERTS

IIS Application Pool Restarts

THE CULPRIT
Clearing the IIS Application Pool.

THE CRIME
Everyone who has worked with Microsoft® IIS for more than 10 minutes knows that the first
thing you do when a site stops responding is to restart the application pool. But far fewer people
understand why that fixes things, and therefore, which use cases will not be resolved with this
action.

page 28

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

THE CORRECTION
Really this boils down to knowing when (as well as how) to restart the application pool depending
on the scenario. Because a lot of this hinges on a solid understanding of IIS’s architecture, we’ve
included detailed information in Appendix A. Once you understand that, the following will make
more (if not perfect) sense:

In the case of a crash or hang, http.sys is maintaining the user connections at least until the
timeout is reached. Recycling the application pool means instantiating a new worker process
that can then pick up those lingering connections and begin processing them again. This avoids
the need to perform more aggressive techniques, such as restarting IIS, or worse, the server
itself.

In load-balanced environments, many systems administrators first remove a misbehaving server
from the group of servers so that no new connections can be made while the issue is being
resolved.

In general, this is the right thing to do, but when recycling an application pool, it actually slows
down the process.

On a live server, the process of recycling the application pool goes like this:

»» The new worker process is started

»» Incoming traffic is sent to the new process

»» That process is registered as functioning

»» Once the new process is registered, the old process is shut down

By disconnecting a server from its load balance group, the new process isn’t registered as
functioning, and the old process doesn’t shut down until the timeout is reached.

However, this directly leads to the next issue:

Restarting IIS

THE CULPRIT
Restarting IIS when there are still live connections.

THE CRIME
Restarting IIS when there are still active connections guarantees that new incoming users are
going to see an error. When there is only a single web server, this is unavoidable. But in the case
of a load-balanced web environment, it’s unnecessarily disruptive.

page 29

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

THE CORRECTION
This is the exact reverse of the final point made earlier. If restarting the application pool fails to
resolve the issue, then the next logical step is to restart the IIS service as a whole.

But before doing so, make sure the server has been removed from the load-balancing pool so
that newly arriving users will not accidentally connect to the misbehaving server mid-restart.
Once IIS is back up and verified, it can be added back to the load balance group.

Service Restarts

THE CULPRIT
Simplistic “service down” alerts.

THE CRIME
In this era of robust monitoring tools, there is no excuse for having an alert that simply tells you,
“Service XYZ crashed.” Doing so means that, in the case of mission critical applications, you will
either keep NOC staff busy but bored with tedious and meaningless actions. Or, in the absence
of 24-hour coverage, you will have to wake critical staff to take an action that could have been
performed by a well-trained chimpanzee.

THE CORRECTION
Any monitoring tool that can detect an error with a service – whether it is down, consuming
too much (or too little) RAM, spiking CPU, or some other easily detected issue – should also be
able to restart that service.

More to the point, the automatic restart should be followed with a second check to help ensure
the service is running correctly. If not, additional escalation should take place.

As discussed in the “Automation, Not Art” e-book, the inclusion of automated responses, even
on smaller but more frequent events like this, can save organizations thousands of dollars in
staff time, lost opportunity cost, and even customer interactions.

So, the proper flow is:

»» Monitor the service

»» Service displays an error

»» Monitoring application automatically restarts the service

»» Short wait cycle while the service restarts and stabilizes

»» Service is re-checked

•	 If the service continues to display problems, an escalated action is taken
(critical ticket, page out to staff, etc.)

page 30

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

•	 If service is stable, non-critical ticket is logged so staff can review at a
convenient time

Orphaned User Sessions

THE CULPRIT
Ignoring orphaned user sessions or waiting for the server to just run out of connections.

THE CRIME
Somewhere in the murky past, the first computer went online and became Node 1 in the vast
network we now call the internet. The next thing that probably happened, mere seconds later,
was that the first user forgot to log off their session and left it hanging.

For any system that supports remote connections—whether it’s in the form of telnet/ssh®, drive
mappings, or RDP sessions—having the ability to monitor and manage remote connection user
sessions can make running weekly, if not daily, restarts unnecessary. Or at least much smoother.

THE CORRECTION
For Linux, use the W command to list out remote connections with the connection duration and
idle time. Then use the Who command to discover the session ID, or with greater granularity,
by remotely running netstat -tnpa | grep ESTABLISHED.*sshd. Once you have the process ID,
you can kill it.

For Windows, the easiest way to get the information you need is to use the PowerShell quser
command. While this is not the simplest command to get the hang of, doing an internet search
for “quser get-loggedonuser powershell” should yield a number of great scripts where people
have done the work for you.

DNS Cache issues

THE CULPRIT
Failing to monitor the DNS Cache, or respond appropriately when there are issues.

THE CRIME
At times, a server or application will misbehave because it can’t contact an external system.
This misbehavior may be due to corruption in the DNS cache, or because the remote system
has moved but the local DNS hasn’t updated.

THE CORRECTION
Detecting issues with DNS is usually done using synthetic transactions that test DNS connectivity
and validity on a regular basis. So, a check would be set up to query a specific DNS server for
the name and IP of a known device. The monitor then checks the results against the expected
results.

page 31

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Fixing the issue is as simple as clearing the cache and letting the DNS server refresh its entries.

In Windows, use the command ipconfig /flushdns.

In Linux, the command varies from one distribution to another, so it’s possible that sudo /etc/
init.d/nscd restart will do the trick, or /etc/init.d/dns-clean, or perhaps another command. Check
what the correct commands are for your version.

VIRTUALIZATION-BASED MONITORS AND ALERTS

Virtual Machines and CPU

THE CULPRIT
Monitoring CPU utilization on virtual servers.

THE CRIME
Monitoring a virtual machine as if it is a physical server has its advantages, but one of the
biggest fake-outs is CPU. Just because a virtual machine believes the CPU is experiencing high
utilization has little to no bearing on whether the physical resource is at capacity or not.

Conversely, even with the virtual machine’s operating system reporting low CPU utilization,
a problem at the host level could cause the VM to operate (from a processing standpoint) at
sub-optimal capacity.

THE CORRECTION
There are two values that need to be discussed before the correct monitor and alert can be given:

CPU Ready Time (RDY%)
CPU Ready Time describes the condition in which the VM has work to do (called a “ready to run”
state), but has to wait for the hypervisor to schedule that work on one or more of the physical
CPUs. This is typically seen when a physical host is over-subscribed (too many VMs) or where
a larger VM with an SMP application (like SQL Server®) is on the same host with a number of
smaller VMs.

NOTE: On Microsoft Hyper-V® environments, the equivalent value is called “Wait Time Per
Dispatch.”

Co-Stop (%CSTP)
Co-Stop is the amount of time an SMP virtual machine was ready to run, but incurred delay due
to co-vCPU (virtual CPU) scheduling contention. In a multi-vCPU VM, this metric indicates either:

»» The amount of additional time after first vCPU is available until other vCPUs are ready for the
job that needs to be processed, or

page 32

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

»» Any time the vCPU is stopped because of scheduling issues

NOTE: On Microsoft Hyper-V environments, the equivalent value is obtained using a Performance
Monitoring (PerfMon) counter called Inter-processor interrupts /sec.

While it sounds like CPU Ready and Co-Stop measure the same thing, the key difference to
remember is that Co-Stop is a metric specifically meant to measure SMP VMs, (the value would
be zero on a single CPU VM), whereas CPU Ready applies to any VM in the system.

Putting this all together, a useful alert threshold would look for:

CPU Ready > (10% * <vCPU count>)

OR

Co-Stop > 3% for an extended period of time

Or for Hyper-V systems, it would be:

Wait Time > 40ms

OR

Inter-processor interrupts /sec > (20 * <number of vCPUs>) for an extended period of time

DATABASE-BASED MONITORS AND ALERTS

Page Life Expectancy / Buffer Cache Hit Ratio

THE CULPRIT
Using page life expectancy or buffer cache hit ratio indicators of database performance.

THE CRIME
By itself, Page Life Expectancy – the amount of time a page of data remains in memory without
anything explicitly requesting that page of data – appears to be a very important statistic. It
certainly was, once upon a time, when servers sporting 4Gb of RAM were the Big Machines on
Campus (BMoC).

According to experts (SolarWinds Head Geek Thomas “SQLRockstar” LaRock among them),
the goal is to have every page of data remain in memory forever because it is so useful. A low
number (under 300) indicates that there’s not enough memory on the system and data is being
paged out frequently.

page 33

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Based on that, a graph like this could be construed as a cause for concern:

According to the Database Performance Analyzer (DPA) knowledge base, buffer cache hit
ratio (BCHR) is “the rate at which SQL Server finds the data blocks it needs in memory rather
than having to read from disk for this instance.” Therefore, BCHR alone is not very meaningful.
Because of read-ahead technology, your BHCR can be 100% throughout a crisis because the
engine will know it needs additional pages and grab them, and they will be “hit” in the cache. In
other words, BHCR can tell you what happened, but it can’t really predict what is about to happen.

THE CORRECTION
As described by SolarWinds Head Geek Thomas (SQLRockStar) LaRock in his blog post here,
(https://thomaslarock.com/2012/05/are-you-using-the-right-sql-server-performance-metrics/)

“What you really want to see is the rate at which your pages are being cycled through the buffer
pool. I usually look for rates around 20MB/sec as a baseline. Why that number? Because if I
have a typical server with 56GB of RAM available for the buffer pool (thank you, locked pages in
memory) and I want to keep my pages around for an hour or so (3600 seconds), then I come up
with 56000MB/3600sec, or about 15.5 MB/sec. That’s why I look for a sustained rate of about
20, on average, and if I have a spike upward from there I know I am having memory pressure
(pressure that might otherwise fail to be seen if I only examine the PLE counter).”

page 34

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Based on the three graphs above, the changes in page life expectancy are due to some other
issue, possibly changes in workload during various times of the day. The buffer cache is working
fine, and there was one little blip at 8 a.m., but it didn’t hit the 20Mb/sec threshold. So, it’s really
nothing to worry about and shouldn’t have triggered an alert anyway.

TOP 10 QUERIES BY CPU

THE CULPRIT
Alerting based on a “top 10 queries, sorted by CPU utilization” list.

THE CRIME
“Top 10 queries by CPU” is just about useless. Sure, it’s become an industry standard, but it
is virtually meaningless in terms of actionable information. If the top 10 queries by CPU are
processing data efficiently, and are, in fact, the top 10 most run or most important queries, then
everything on the server is running as intended.

THE CORRECTION
With database performance, the real story lies in locking, blocking, and waits. Some quick
definitions:

»» Locking is when a session holds a lock on a resource and other sessions attempt to acquire
conflicting locks on the same resource. The second session will wait on one of the LCK_M
wait types, and depending on conditions, severe performance degradation can occur.

»» Blocking is the result of a separate transaction trying to access a resource that is locked.

»» Wait occurs whenever a thread or session has to wait for something before executing. It could
be that a resource is waiting for a locked resource to become available, or data to be loaded
into the buffer cache, or a number of other conditions.

The upshot of all this is that by shifting the focus of your monitoring and alerting from “top
queries” to queries that encounter the largest amount of wait in a given period of time, you’ll be
far more likely to find, address, and resolve performance issues.

page 35

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Monitoring improvements, especially the kind that we’ve been discussing here,
takes time. It takes time to dream up, develop, and test. It takes time to test some
more, and one more time after that, because we’re professionals here and we know
how things go. It also takes time to deploy. And, please excuse the cliché, all of
that time translates into money for the business.

So, smart monitoring specialists need to take the accountants into account. While this guide
can’t tell you everything you need to do to satisfy the number crunchers at your company, this
list of suggestions should at least get you started.

REMEMBER THE BAD OLD DAYS?
You need to, at least from a numbers perspective. Make sure you have data on the ticket counts
before you install a new automation system. This will allow you to say things like, “Before
monitoring, we were generating 800 systems-related tickets a month, with approximately 200
for interface issues, 400 for system outages, 150 for service failures, and 250 for assorted
application issues. After implementing these improved alerts, those tickets dropped to, etc...”

Show Me the Money

page 36

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Watch this video. This, my friend, is what you sound like to everyone else. It’s
especially what you sound like to the business leaders at your company. They may
nod appreciably, but there’s a good chance that your pet iguana understands more
of your conversation than they do.

So, in the name of getting what you want, skip it. All of it. Instead, put things into terms they care
about. You have the ticket data from the previous step, right? Now turn it into dollars.

The algorithm isn’t difficult. Set an estimated amount of time to resolve each of the ticket types
that you listed in the previous steps. Something like:

»» Interface issue - .75 hour

»» System outage - 1 hour

»» Service failure - 1.5 hour, etc.

Now ask your number crunchers what the average total loaded cost of an employee is. This is
the hourly rate for an employee that factors in everything about them, including their portion
of the heat and electrical bill.

Now multiply the <total loaded cost> x <time per issue> x number of tickets for that issue.

This will give you the total cost for that issue for that period of time. If you do this for the before
and after phases, you know how much you’ve saved the company, just by adding or improving
monitoring and alerting.

To help you out, I’ve included a whole section of real-life examples near the end of this e-book.

Avoid the Retro Encabulator

page 37

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Despite our suspicions to the contrary, your typical business leader’s day does
not comprise three hours spent skimming The Wall Street Journal®, followed by a
round of golf, martinis, and one meeting with you, where they listen perfunctorily
and simply say “no” at the end.

Rather, their day is an endless series of meetings where the person at the front of the room
declares how much they know (see “The Retro-encabulator” in the previous section) followed
by some version of “trust me, this is important.” Inevitably, they request an amount of money
that the business leader suspects is three times what is needed to protect against eventual
budget cuts.

One of the best ways to attract the kind of attention you want from important decision-makers in
your company is to provide them with solid numbers. Another way is to show your results in the
form of end-user testimonials. When coupled with numbers, positive descriptions of experiences
before and after installing automation provided by people from various departments reinforce
the idea that the effort required to implement automation is worth the investment.

Doing this also has the secondary benefit of reinforcing the message that investing in the
monitoring solution was also a good decision, and that further investments will have similar
positive outcomes.

Gather Your Posse

page 38

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

REVENUE, COST, RISK
During the 2015 THWACKcampTM session, “Buy Me a Pony,” I sat down with the SolarWinds CTO
to discuss the drivers that help executives make decisions. He boiled it down to three things:

»» Increasing revenue

»» Reducing cost

»» Avoiding risk

If your project, software, initiative, etc., can’t speak to one of those things, it’s simply not going
to be a priority for them.

The good news is that effective monitoring does at least two of those things. It helps to reduce
costs by catching issues sooner in the failure process, potentially before they spiral out of control,
which clearly helps reduce business expenses.

Monitoring also helps avoid risk. Conversations about risk mitigation and avoidance frequently
focus on ways for teams to predict, and then circumvent, potential failures that could affect a
system, application, or service. Monitoring comes into play when you’ve come down from that
philosophical mountain and accepted that some failures are simply unavoidable. So, in this
case, risk monitoring helps you avoid the downstream consequences of failure by detecting
and responding to it as soon as possible.

page 39

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

If you are just getting started with monitoring (or improving what was in place when
you got into this job), it may still be hard to imagine that a simple script could have
that big of an impact on your environment. To help with that, I’ve collected a few
war stories from friends and colleagues. Use these as you start to socialize the
idea of monitoring automation in your company, at least until you you’re your own
stories to tell.

It’s important to understand that I didn’t include these stories because the monitoring was
particularly complex or the savings were in the stratosphere. Quite the opposite, in fact. The
solutions featured here are extremely modest and easy to accomplish, and the savings are
meaningful but not in the millions of dollars. Trust me when I say that once you get started with
monitoring, those million-dollar opportunities will present themselves. But the lesson here is
that smaller efforts have the ability to yield measurable returns.

SERVICE MONITORING STARTS AT HOME

Shared by Josh Biggley, Monitoring Engineer for Cardinal Health:
“Since our monitoring is heavily dependent on SNMP, we have an alert in place that checks
whether that service is actually responding on Windows systems. If not, we automatically restart
the service. From its inception until October 2014, we were auto-restarting the SNMP service
and created an average of 1.98 incidents per day. In October 2014, the Windows team requested
that we remove the logic to restart SNMP. Between October 11, 2014 and January 12, 2015, we
averaged 6.35 incidents per day, an increase of 4.37 incidents per day.

Even if the total incident handling time was only 15 minutes for all parties involved, removing that
logic added an extra 65.5 minutes of work per day, or nearly 400 hours per year. That’s 1/5th of
an FTE. As you can imagine, when we highlighted these numbers to the team, they asked us to
re-enable that SNMP restart logic.”

CLEARING TEMP-TATION

Shared by Josh Biggley, monitoring engineer at Cardinal Health:
“While we developed some very sophisticated alerts for “disk full” monitoring, we still were
creating over 700 tickets per month for this one event type, the largest volume of tickets for a
single event in the enterprise. As we discussed it with the server teams, they pointed out that
in the majority of cases, clearing the temp directory was all they had to do to resolve the issue.

So, we tested and rolled out a solution to do that automatically. We always open a ticket, but if
the disk- clearing script succeeds, we update the ticket as “deferred” rather than “open” and the
support team isn’t paged out.

The Plural of Anecdote

page 40

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

To give you a sense of how successful that is, we deferred 408 tickets between August 8 and
August 31. We presume that responding to a “disk full” event takes staff an average of 15 minutes
to manage. But even with that minimal time, we’re talking about 17.7 events, or 4.4 hours per day.

Automation is saving us half of one staff person each and every day for just this one event type
alone!”

FLAGGING THE PROBLEM CHILDREN, THEN EXPELLING THEM FROM
SCHOOL

Shared by Peter Monaghan, CBCP, SCP, ITIL ver.3
“We’ve set up similar scripting actions regarding disk space alerts and Windows Services
unexpected stops. Since we don’t have a 24x-7 NOC, we have introduced “repeated” SolarWinds
alerts for Tier 1 IT Services so that if one of those services fails after hours, scripts are initiated
upon alert generation to automatically restore services. If services aren’t restored, alerts
are generated every 30-45 minutes (depending on service) until either the script or manual
intervention restores it.

Once I set up monitoring for these services, I was able to focus on the repeat offenders and
ultimately reduce all chronic alerts and outages by over 70% for all Tier 1-3 IT Services.”

SIGNAL TO NOISE

Shared by Rick Schroeder, Network Administrator
“We experience approximately four unscheduled WAN outages per month. Our affected sites
range from five employees to three hundred.

Using monitoring automation, we reduced the amount of downtime by 15 to 60 minutes per site,
per incident simply through increased visibility by getting the right information to the right teams
faster, so they could respond. That included providing near real-time information on outages of
the WAN vendor so they could begin verifying and testing, perhaps bringing in last-mile providers,
intermediate providers, or rolling a truck and technician to the site.

Some of the outages were six hours or more – if the issue was caused by backhoe fade or trees
falling on aerial WAN connections.

Depending on the number of users affected, we calculated our savings at $86,400 per year for
our larger sites, and $375,000 for outages at our data center, which only occurred once every
three years or so, but in addition to being costly, it’s also very visible.

And all of that doesn’t consider the intangible costs for customers lost and impressions left.”

page 41

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

REPETITIVE STRAIN

Shared by Will Luther, Analyst Network Operations, GVTC
“A few years back, before we had any automation in place, I had to manually go through and
back up the configs for all of our devices (starting with 200+). So, every week I would manually
connect to EVERY device, paste my commands in, and back up the configs. This process took
me approximately two full workdays to complete, every week.

As our network grew, my notepad of commands to be copied and pasted evolved into a collection
of “expect” scripts. This was a major leap forward, and cut down the time to back up significantly.
While it had previously taken me roughly two full days to perform all of the device backups, I
was now able to back up those same devices in less than a day.

Our network eventually grew to be 1000+ devices, and even with those expect scripts, it started
to take longer, yet again. Additionally, in this time frame, we had several devices die. And, while
I was able to eventually provide the backed up configs, it was still cumbersome and time
consuming.

I finally got the approval to get an automated configuration management system.

That was the answer, and the last evolution of our config management system. Now, I spend
exactly 100% of zero days each week, backing up configs. The configs are easy to find, which
makes re-configuring devices painless.

So automation has recovered 824 hours of staff time per year, not counting the faster resolutions
when there is a device failure.”

NOBODY WANTS TO HEAR “OOPS” IN THE OPERATING ROOM

Shared by Cahunt
“At one point, the hospital where I worked had an in-house developed EMR system that was
distributed across several servers. The system would fail if a single service on any of those
servers stopped unexpectedly. That application team’s way of managing this was logging each
server to check the service/process status one at a time until they found the stopped or hung
service and then restart the servers in a specific order that would allow the service/process to
restart, and the servers to reconnect with each other and bring the EMR application back online.

Most outages averaged 1-2 hours and required the team of 4-6 developers ($50-80/hr) to search
each server for that one service/process.

Implementing monitoring alone saved the company no less than $200 per outage, just for the
development team’s time, let alone the cost of the entire hospital staff whose work was held up.

page 42

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

Also a factor was that reducing the downtime from one hour to 30 minutes meant we only
missed/delayed one appointment instead of two or three. The impact on delayed surgeries was
even more noticeable.”

THE RX IS RESTARTING SERVICES

Shared by Cahunt
“The Rx Group agreed to monitor the few specific services that were critical and which caused
the robots that dispensed medication to shut down.

With simple notification, outages went from an average of one to one and a half hours to 20-25
minutes and translated to a savings of $266 in staff time per event.

On the business side, not having an extended delay in the robots dispersing medications was
(literally) invaluable to the medical staff and patients when you consider the risk to health and
possible lawsuits.”

THE RIGHT INFORMATION AT THE RIGHT TIME

Shared by Paul Guido, Systems Team, Regional Bank in South Texas
“We monitor approximately 100 data circuits. According to our records, a circuit goes out
about fifty times a year due to carrier issues, floods, dry spells, drunk drivers, ice storms and –
everybody’s everybody’s favorite – backhoes.

Before monitoring, we would have to wait from 30 to 120 minutes before IT knew about the
issue. To see if the issue was on our side, a person would be dispatched to the site. Typical drive
time would be an hour. If the smart jack shows an error on the carrier side, a ticket would then
be opened manually.

In addition, circuit outages cost a branch operation six to eight additional hours per circuit
incident.

After implementing monitoring automation, a ticket is opened with the proper carrier within ten
minutes. Our company and the carrier investigate the outage to see what is at fault (us or them).
Because all the required information is gathered and included in the ticket, every hour of down
time only causes three to four hours lost at the branch.

In a single year, circuit monitoring saves 250 to 400 hours of productivity.”

THE PRICE OF A CUP OF COFFEE

Shared by Kimberly, SysAdmin
“We have an application that approximately 470 developers use to drive their development
cycle. The application would occasionally hang during a re-indexing overnight, and wouldn’t be

page 43

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

available when the majority of the devs arrived at work between 7 and 8 a.m.

I’m more of a 9 o’clocker myself, and so I’d either get a call during my not-so-awake moments,
or they would have to wait for me to arrive at the office. Our devs make about $33.50/hour.

Prior to automation, the math looked like this: 470 developers down for two hours at $15,755
per hour, or approximately $31,508 in lost employee productivity.

I was able to set up a monitor for that re-indexing job, and when it hung, executed a script that
restarted the service and sent a message to our operations center to look at the app, confirming
that it was accessible after the restart.

From that point on, the devs could start to work right away, the company didn’t lose employee
productivity, and I got to drink my first cup of coffee uninterrupted. Truly priceless!”

THE LITTLE THINGS ADD UP

Shared by Jason Higgins - Network Analyst
We have an application/service on a print server that allows our billers to print remotely stored
data locally through encrypted channels. This application/service would frequently (two to six
times a week) hang up and stop responding on the server. The fix is simple enough, just remote
into the server, find the service, and restart it, which took about 10 minutes total from call to
resolution.

The problem comes in when people don’t report the problem all day, and then call in right at the
end of the day in a panic. Our help desk consists of only three people, and they are frequently
not at their desks because they are out working on problems. The lead person for the week
carries a side phone to take calls on the go, but even then, you have to find a computer to get
on, and so on and so forth.

I set up a job to monitor that service and alert when it was not running or not responding. This
was a great first step because they help desk could see the alert, remote into the server, and
restart the service. Usually this took place before the end-users even knew it wasn’t working.

But again, this went on anywhere between two and six times a week. After having the alert set
up for a few weeks, I discovered I could go a step further and actually restart the service when
it stopped responding. I put this into place, and now the help desk does not have to do anything
when the error happens. It takes care of itself, and they just log the ticket.

We calculated the cost of a single outage. In terms of staff cost, it was just $16.31. But this is one
of those cases where the math adds up. Two to six incidents per week means $32-97 per week,
which adds up to $1,696 to $5,044 per year. Maybe not a big deal to some larger companies,

page 44

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

but it was certainly a big deal to us.”

With all of this said and done, sophisticated alerts are enabled by (and are the
result of) good monitoring. When done correctly it’s elegant, simple, and most
importantly, not artisanal. It’s just monitoring and alerting the way it was always
meant to work.

There are certainly many other examples of sophisticated monitors and alerts than the ones
provided in this guide, but what I want you to leave with is the understanding that the biggest
barrier to implementation at most companies is not the wrong tools, or the wrong skills. It’s
having the wrong mindset, one that says monitoring and alerting is complicated or difficult. “Far
beyond the ken of mortal man,” to quote the old Superman reruns1.

In the end, monitoring and alerting are only limited by your ability to imagine and then implement,
assuming you’ve got a good monitoring tool in place, rather than your ability to perform some
weird interpretive dance.

1	 Warner Bros. and DC Comics, Inc., Superman, 1952.

The Completely Unecessary
Summary

page 45

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

First, a little background on application pools:

Introduced in IIS version 6.0, application pools are used by IIS to isolate web applications.
This allows you to have different configurations (security, resource usage, etc.) to help prevent
misbehaving applications from interfering with other applications.

It is difficult to overstate the importance of this concept as it relates to an IIS-based web
environment. The application pool is effectively the heart of a website. A pool isolates a web
worker process, which brokers all communication between the URLs that make up a website
and the kernel-level http.sys process that runs for the entire server.

Associating different URLs with their own application pool allows the server to use that single
http.sys process to interact with different sites running on the server in different ways, and for
each of those sites to be segmented from each other in terms of performance and security.

Conversely, associating multiple web sites with the same application pool allows them to run
within the same security and performance context, and share information in a way that two
separate web sites could not.

SO… what can go wrong with IIS?

To answer this question, it helps to explain what can’t go wrong anymore. By separating the
kernel-level http.sys process from the higher level web interface activities, a hang or crash at
the web site level doesn’t automatically hang or crash the web server.

Appendix A: What Can Go Wrong
With IIS?

page 46

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

What this means is that, prior to IIS 6.0, if you were browsing a web site that had a hang or
crash, you would know relatively immediately. But now a failure in one website will not affect
your browsing session on another site. If it can recover fast enough, it may not even impact your
browsing session on the site with the problem.

CRASH VS HANG
Practically speaking, a crash is something that will wipe out the host process and stop whatever
server side work and response generation that the process was supposed to send out. By
using application pools http.sys holds the connections in kernel mode, so the connection stays
connected and IIS starts up a new process to handle future requests.

On the other hand, a hang will usually keep its host process around, but no work will actually
be done.

It’s important to note that from the user’s perspective, a crash or a hang are identical experiences
that are indistinguishable from a browser error on their local system.

page 47

MONITORING 201: MOVING BEYOND SIMPLISTIC MONITORS AND ALERTS TO #MORNINGGLORY

TO DEBBIE
Mr. Rogers once gave viewers 10 seconds to think about the “...special ones who have loved us
into being ... people who have helped you become who you are.” You are the special one who
has loved me into being, who has been by my side encouraging me to be the best version of
myself. If I have achieved anything of real significance in this world, it is only because of you.

TO THE SOLARWINDS HEAD GEEKS
You are four of the most incredible, talented, intelligent, and exciting people to be around. I am
grateful every day that I get to be part of this team, and do the work we do. Thank you for letting
me be in the cool kids’ club.

TO THE SOLARWINDS THWACK MVPS
Many of your words and wisdom appear on the pages of this book, either directly – because you
are so generous with your time and skills – or as a result of our conversations in the convention
booth, at SWUGTM meetups, on Slack®, and of course on THWACK.com itself. You inspire me
with your creativity and enthusiasm. When I am representing SolarWinds, part of my mission
is to also represent your importance and impact, to the company, to our products, and to me.

Dedications

© 2017 SolarWinds Worldwide, LLC. All rights reserved.

The SolarWinds, SolarWinds & Design, Orion, and THWACK trademarks are the exclusive property of SolarWinds Worldwide, LLC
or its affiliates, are registered with the U.S. Patent and Trademark Office, and may be registered or pending registration in other
countries. All other SolarWinds trademarks, service marks, and logos may be common law marks or are registered or pending
registration. All other trademarks mentioned herein are used for identification purposes only and are trademarks of (and may
be registered trademarks) of their respective companies.

